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Our study hypothesis is that GSA can provide a systematic method to ascertain which
PBPK model parameters have negligible influence on model outputs and can be fixed
to improve computational speed in Bayesian parameter estimation with minimal
bias. Although GSA offers many advantages compared to local SA, only a few
applications in PBPK modeling have been published. For instance, a previous study for
a PBPK model of m-Xylene demonstrated that parameters identified by GSA as having
little influence had similar posterior distributions to those when all parameters were
calibrated using the Bayesian approach [1]. Here, we extend this approach in a new
case study using a more complex model: a PBPK model for acetaminophen (APAP) and
its conjugated metabolites. We used this case study to answer four key questions:

(1) What is the relative computational efficiency/rate of convergence of various GSA
algorithms?

(2) Do different algorithms give consistent results as to direct and indirect parameter
sensitivities?

(3) Can we identify “insensitive” parameters that can be fixed in a Bayesian PBPK
model while achieving similar degrees of accuracy and precision?

(4) Does fixing parameters using “expert judgment” lead to unintentional
imprecision or bias?

We examined questions (1) and (2) by applying four different GSA algorithms to the
PBPK model. For question (3), we compared the results of MCMC simulations of the
PBPK model with and without fixing sensitive parameters. We applied each of these
analyses to the PBPK model using the original set of model parameters (OMP),
calibrated in the previously published model, which included numerous parameters
fixed by expert judgment; the sensitive subset of these original parameters (OSP); the
full set of model parameters (FMP) including those previously fixed; and the sensitive
subset of these parameters (FSP). Thus, question (4) was examined by comparing the
results obtained from OMP, OSP, FMP, and FSP.

Our results suggest the following efficient workflow for 
applying GSA to Bayesian PBPK [9]:
(1) Establish prior distributions for all parameters, and 

ensure that the prior predictions cover the range of 
data being used for model calibration.

(2) Use the eFAST estimator for parameter sensitivity, 
making sure to check convergence using the 
method of Sarrazin et al. (2016).

(3) Visualize parameter sensitivity, distinguishing 
“sensitive” and “insensitive” parameters with a cut-
off such as 0.01 or 0.05, so that any parameter with 
a Sobol index for at least one output greater than 
the cut-off would be identified as “sensitive.” The 
cut-off approach to identify and classify parameters 
could also be implemented in software once 
reasonable threshold values are established.

(4) Conduct model calibration using MCMC simulation 
for only the “sensitive” parameters, fixing 
“insensitive” parameters at nominal values.
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Traditionally, the solution to reduce parameter dimensionality in a physiologically-
based pharmacokinetic (PBPK) model is through expert judgment. However, this
approach may lead to bias in parameter estimates and model predictions if important
parameters are fixed at uncertain or inappropriate values.
The purpose of this study was to explore the application of global sensitivity

analysis (GSA) to ascertain which parameters in the PBPK model are non-identifiable,
and therefore can be assigned fixed values in Bayesian parameter estimation with
minimal bias.

HYPOTHESIS

MATERIALS & METHODS
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Convergence Analysis of Sensitivity Indices

In each case, the maximum index (i.e., combination of time-point, dataset, parameter, compound, and
main vs. total effect that converges the slowest) is shown, along with the cost in terms of number of
model evaluations and computational time. For the Morris screening method, the analysis with the
small sample number of 1024 (resulting in 22,528 model evaluations) reached an acceptable converged
result (convergence index < 0.1), The alternative methods of Jansen and Owen estimators did not lead
to convergence, even up to a sample number of 8192.
Answer 1: The Morris method provided the most efficient computational
performance and convergence result, followed by eFAST.

Correlation Matrix for Main (grey) and Interaction (red) Effects 

A
For the OMP, the 
variance-based 
Sobol indices 
showed a high 
correlation (r > 0.9) 
with each other. 
The Morris indices 
had the relatively 
lower correlation 
with variance-
based indices. In 
addition, the 
correlation of the 
interaction had a 
lower range (0.70 –
0.99) than the main 
effects (0.88 –
1.00). The 
correlation plot for 
the Morris- and 
variance-based 
indices shows a 
‘hockey stick’ 
shape, suggesting 
that there are 
different 
correlation 
properties between 
“sensitive” and 
“insensitive” 
parameters. 

B
The FMP shows 
similar correlation 
properties for the 
sensitivity indices. 

Answer 2: 
Local and global 
method give 
inconsistent 
results as to 
direct and 
indirect 
parameter 
sensitivities.

Parameter-Specific Sensitivity Test Result

Model Evaluation Across Different Analyses for Each Study Group

A. Visual inspection of the data points relative to the scatter of the predictions suggests that each parameter set shows a 
consistent or similar predicted curve in the high-dosage (20 mg/kg and 80 mg/kg) groups (E to H). The low-dose groups (325 
mg and 1000 mg) (A to D) showed slightly different calibration results in the predicted curves from the given parameter set. 
We used the coefficient of determination (R2) as a metric of precision. 
B. Results show that the estimated R2 were relatively high in all simulation sets (R2 >0.7). Across all the different analyses, the 
best performance was from the FMP and the “sensitive” parameters FSP01 (all estimated R2 > 0.9) – higher than the results 
from the OMP, OSP, or FSP05.  

Comparison of the Marginal Posterior Distributions for Sensitive Parameter and Log-likelihood 

OMP FMP
Number of parameters 21 58
MCMC time-cost (hr) 37.1 66.3
GSA-EE (hr) Morris 0.009 0.019
GSA-Sobol (hr) eFAST 0.164 0.038

Jansen 0.115 0.04
Owen 0.382 0.123

Sensitivity cut-off point > 0.05 OSP FSP05
Number of parameters 11 10
MCMC time-cost (hr) 20.8 22.1
Sensitivity cut-off point > 0.01 (=OMP) FSP01
Number of parameters 21 20
MCMC time-cost (hr) 37.1 35.2

Global Evaluation of the Model Performance and 
Computational Efficiency

Some parameters showed similar 
distributions among different analyses. 
However, for some parameters, such as 
the partition coefficient of muscle 
(PM_APAP), the fixed nominal value 
was closer to the tail of the posterior 
distribution.  Thus, fixing parameters 
using “expert judgment” can lead to 
bias in some of the parameter 
estimates.

For OMP and OSP, the log-likelihood 
distributions overlapped, indicating 
similar model fit.  The log-likelihood 
distribution for FSP05 was substantially 
below both the OMP and FMP.  
However, for FSP01, using the cut-off of 
0.01, not only did the log-likelihood 
distribution overlap with FMP, based on 
all the parameters, but it was also 
substantially greater than the log-
likelihood using the OMP.  

Answer 4:
GSA was more effective than 
“expert judgment” at identifying 
parameters that are influential, 
and led to a better fit between 
predictions and data even though 
almost the same number of 
parameters were used .

A
compares the 
overall global 
evaluation of 
model fits 
across all the 
alternative 
analyses.

B
The residuals 
from the 
predicted 
result versus 
experimental 
values were 
used to 
evaluate the 
“accuracy”
and 
“precision” of 
model 
performance.

The above table summaries the time-cost in GSA and MCMC analyses as the 
measurement of computational efficiency. 
Answer  3: We found that restricting the MCMC simulations to the sensitive 
parameters can substantially reduce computational burden while showing 
little change in model performance.

 APAP-PBPK Model, Parameters, and Data
Our analysis made use of our previously developed PBPK model that describes the
ADME of APAP and its conjugated metabolites, APAP-glucuronide (APAP-G) and APAP-
sulfate (APAP-S) in humans [2,3]. Distributions for parameter priors were derived from
literature values and were assumed to be uniform or truncated normal distributions
under the log-transformed scale [2,4,5].
 GSA Algorithms and Approach
We compared the elementary effect-based Morris method and three estimators for
the variance-based Sobol index in their ability to distinguish “sensitive” parameters to
be estimated and “insensitive” parameters to be fixed. We first check the convergence
of sensitivity indices through the method from Sarrazin et al. [6] and applied GSA to
the original published model, comparing Bayesian model calibration results using all
the original model parameters (OMP) versus the subset of original sensitive
parameters (OSP). We then applied GSA to all the PBPK parameters, including those
fixed in the published model, comparing the model calibration results using this full set
of model parameters (FMP) versus the full set sensitive parameters (FSP). We also
examined the impact of different cut-off points (0.01 and 0.05) to distinguish the
sensitive and insensitive parameters.
 MCMC Simulations
We evaluated global parameter sensitivity both for the OMP alone, as well as the FMP.
As a benchmark, the Bayesian-PBPK analysis was initially performed for both the OMP
and FMP, recording baseline values for computational time and model performance.
 Software and Computing Platform
 GSA was performed with the R “sensitivity” package v.1.15 [7].
 The MCMC simulations were conducted using MCSim v.5.6 [8].
 Parallelized computation of the MCMC was performed within the CentOS Linux

distribution on a high-performance computing cluster at Texas A&M University.

The parameter-specific sensitivity test result for OMP and FMP settings by GSA methods. The lack of convergence, along
with the inconsistencies seen with the OMP, led us to focus on the eFAST method as representing the best balance
among reliability, efficiency, and the ability to discriminate between sensitive and insensitive parameters.

Color meaning:
Purple:  Morris index > 5% of maximum value    
Red: Sensitivity index > 0.05
Pink: 0.01 > Sensitivity index > 0.05
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